

# Design and Implementation of a Thermal Load Reduction System in a Hyundai Sonata PHEV



Cory Kreutzer, Principal Investigator
John Rugh, Task Leader
National Renewable Energy Laboratory
June 9, 2015

Project ID: VSS165

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

### **Overview**

#### **Timeline**

Project start date: FY15

Project end date: FY17

Percent complete: 7%

#### **Budget**

Fully Funded FOA Project

Total project funding: \$3,054,817

o DOE share: \$ 2,443,790

Contractor share\*: \$ 611,027

• Funding received in FY14: \$ 2,443,790

Funding for FY15: \$ 0

#### **Barriers**

- Risk Aversion: Manufacturers are reluctant to invest in and introduce new technologies
- <u>Cost</u>: Effective, timely evaluation of advanced vehicular components and configurations is needed.
- Range Anxiety: Large climate control loads can contribute significantly to electric drive vehicle (EDV) range anxiety

#### **Partners**

- Interactions/collaborations:
  - Hyundai America Technical Center, Inc.
  - Halla Visteon Climate Control Corp.
  - Sekisui Chemical Company, Ltd.
  - Pittsburgh Glass Works, LLC.
  - PPG Industries, Inc.
  - o Gentherm Incorporated
  - o 3M Company
- Project lead:
  - National Renewable Energy Laboratory

<sup>\*</sup> Contractor share represents 20% cost share for the project

## Relevance

#### THE CHALLENGE

- 2014 light-duty vehicle (LDV) fuel use estimated at approximately
   3 billion barrels oil<sup>1</sup>
- Increased market penetration of EDVs requires overcoming
  - Original equipment manufacturer (OEM)
     risk adversity in adopting new
     technologies
  - Limited vehicle range and associated customer range anxiety
  - Elevated cost of EDVs in comparison to existing conventional vehicles
- Climate control loads can significantly impact EDV range



- 1. Data Source: EIA Annual Outlook 2014 http://www.eia.gov/forecasts/aeo/data.cfm, accessed April 2015
- 2. Data Source: Argonne National Laboratory's Advanced Powertrain Research Facility

## Relevance

#### THE OPPORTUNITY

- Reducing climate control loads can increase vehicle range to
  - Enable battery sizing and cost reductions
  - Reduce climate control equipment sizing
  - Enable advanced heating, ventilation, and air conditioning (HVAC) component technologies
- Load reduction system demonstration decreases OEM risk for adoption
- HVAC load reduction and advanced climate control design can positively impact occupant comfort



#### **Alignment with DOE VTP**

- Support vehicle systems key goals for 2011–2015 Program Plan:
  - By 2015, develop technologies and a set of options to enable up to 50% reduction in LDV petroleum-based consumption
- Support meeting EV Everywhere Grand Challenge targets



## Relevance

#### THE GOAL

Increase grid-connected electric drive vehicle range by 20% during the operation of the climate control system over the standard vehicle configuration by reducing vehicle thermal loads

- Design and implement the thermal load reduction system on a production drivable vehicle
- Test the range impact over the combined city/highway drive cycle at peak heating and cooling conditions
- Maintain occupant thermal comfort in implemented system



## **Milestones 2015**



# **Approach – Two-Phase Process**



# **Approach – Testing and Analysis Strategy**



# **Approach – Technology Areas**



# **Accomplishments – Business**

- Completion of legal obligations between all parties involved
  - Multiparty nondisclosure agreement
  - Intellectual property management plan
- Subcontracts for the following project partners (in progress as of April 1, 2015):
  - Hyundai America Technical Center, Inc.
  - Pittsburgh Glass Works
  - Halla Visteon Climate Control
  - PPG Industries
  - Sekisui

## **Accomplishments – Vehicle Platform Selection**



- The 2016 Hyundai Sonata plug-in hybrid electric vehicle (PHEV)\* was chosen to be the vehicle platform for both Phase I and Phase II evaluation and modeling
- Prototype vehicles will be used for Phase I and production vehicles for Phase II

## **Accomplishments – Phase I Preliminary Summer Test Plan**



Two-phase air conditioning test (pull-down & steady-state)



Vehicle Cabin Solar
Thermal Soak Evaluation

| Configuration                  | May      | June     | July       | August   | September |
|--------------------------------|----------|----------|------------|----------|-----------|
| Baseline &<br>North Facing     | <b>*</b> |          |            |          |           |
| Insulation –<br>Full & Partial |          | <b>*</b> |            |          |           |
| Precondition                   |          | *        |            |          |           |
| Baseline – Max<br>Loads        |          |          | <b>*</b>   |          |           |
| Glass Packages                 |          |          | <b>♦ *</b> | <b>*</b> |           |
| Ventilated/<br>Cooled Seats    |          |          |            | *        |           |
| Solar Reflective<br>Paint      |          |          |            |          | <b>*</b>  |
| Combined<br>Technologies       |          |          |            |          | <b>*</b>  |

## **Accomplishments – Phase I Summer A/C Test Approach**



- Split two-component A/C test approach: pull-down and steady-state
- Energy use calculated as cumulative energy during each time interval
- Decoupled pull-down and steady-state components expected to increase repeatability and isolate technology impact on HVAC loads

## **Response to Previous Year Reviewer's Comments**

This is the first year of this project and therefore does not have previous year reviewer comments.

#### **Collaboration and Coordination**

#### **Hyundai America Technical Center**

- Subtier Industry Partner
- Automotive OEM Supplier
- Lead on Phase II Technology Integration
- Lead on Phase II Full System Experimental Evaluation
- Technology Supplier (Collaboration with Gentherm)

#### **Halla Visteon Climate Control**

- Subtier Industry Partner
- Baseline HVAC System Experimental Evaluation
- HVAC System Modeling Support
- HVAC System Control Support

#### **Pittsburgh Glass Works**

- Subtier Industry Partner
- Glass Package Manufacturer
- Advanced Glass Technology Supplier

#### **PPG Industries**

- Subtier Industry Partner
- Automotive Paint Supplier
- Advanced Paint Technology Supplier

#### Sekisui

- Subtier Industry Partner
- Advanced Glass Technology Material Supplier

#### **Gentherm**

- Subtier Industry Partner In Kind
- Door Defrost/Defog Technology Supplier
- Heated Surfaces Technology Supplier (collaboration)
- Advanced Seating Technology Supplier (collaboration)

#### **3M**

- Subtier Industry Partner In Kind
- Advanced Solar Control Film Supplier
- Advanced Insulation Technology Supplier

# **Proposed Future Work**

## Phase I: Technology Design and Development (FY15–16)

- Complete summer and winter technology evaluation
- Complete baseline HVAC system performance characterization for HVAC model development
- Continue human comfort, HVAC system, and vehicle modeling for technology evaluation(s) and development of national level framework
- Perform Phase I technology evaluation Go/No-Go for Phase II

## Phase II: Technology Integration and Validation (FY16–17)

- Integrate thermal load reduction technologies into drivable vehicle system
- Perform operational cold weather, hot weather, and environmental chamber testing at Hyundai America Technical Center facilities
- Refine models with individual technology experimental results and perform national level analysis
- Final vehicle demonstration and project summary presentation to DOE

# **Summary**

- The project's focus is to implement a thermal load reduction system into a GCEDV production vehicle in order to demonstrate the combined impact of previous and current work in this research area
- Key industry partners enable production-ready and costeffective technologies and vehicle-level integration
- A combination of load reduction technologies and zonal climate control strategies are used to meet project goals
- Testing and modeling/analysis are used synergistically to quantify system performance and national relevance

## **Summary**

## **Accomplishments**

- Initiated project with kickoff meeting and coordination on completion of multi-party NDA and IPMP documents
- Subcontract negotiations are in progress (as of April 1, 2015)
   for five subtier partners
- The 2016 Hyundai Sonata PHEV has been selected for the project vehicle platform
- Phase I summer test planning has been completed and A/C testing procedure identified

# **Acknowledgements and Contacts**



## **Photo Credits**

- Slide 4: Matt Jeffers, NREL
- Slide 5: Matt Jeffers, NREL
- Slide 11: Cory Kreutzer, NREL
- Slide 19: Dennis Schroeder, NREL